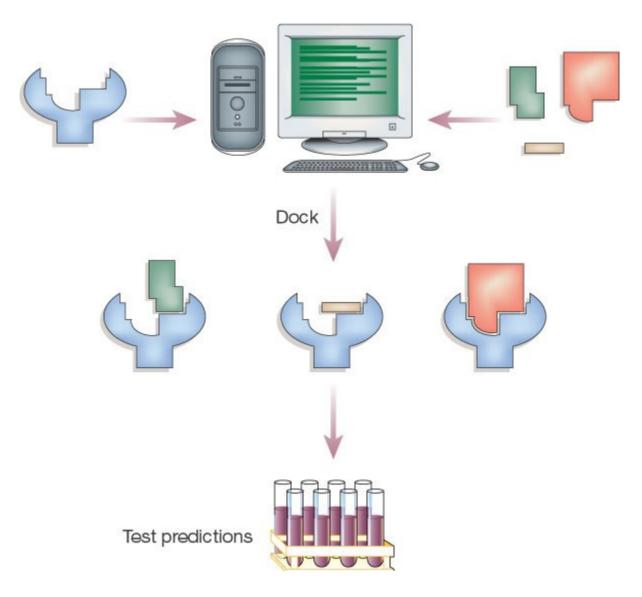
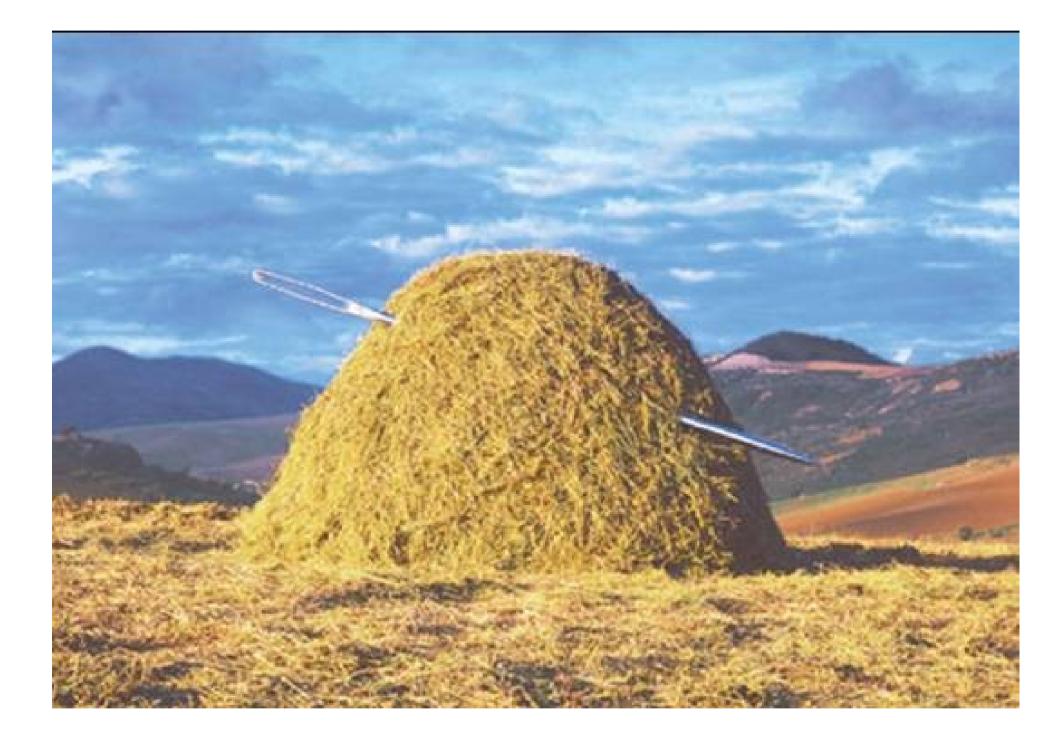
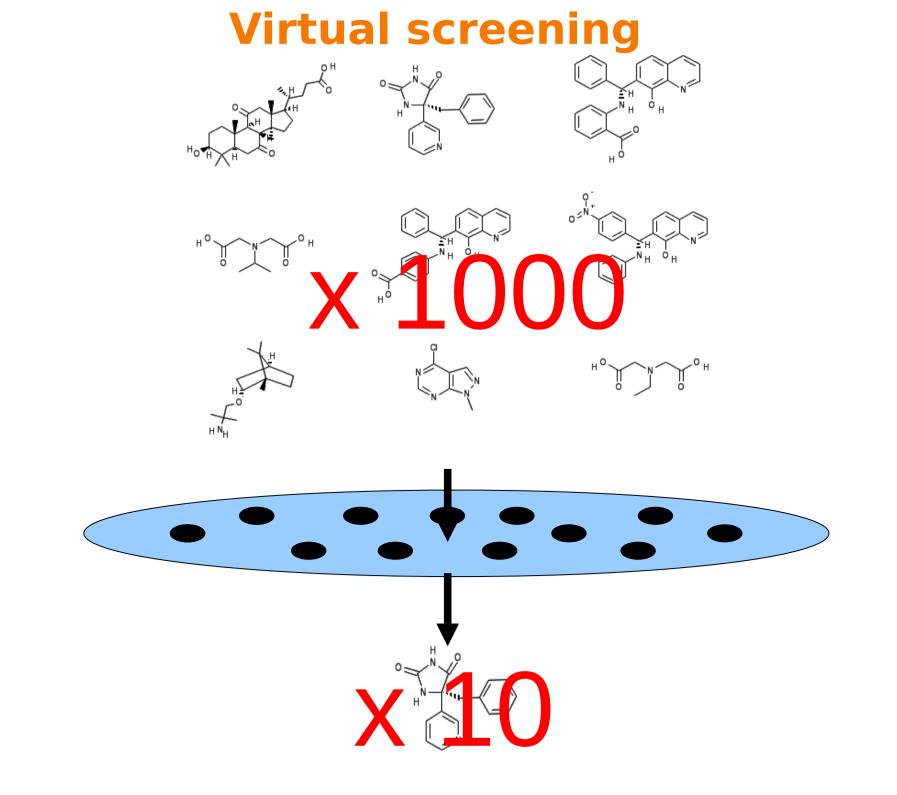
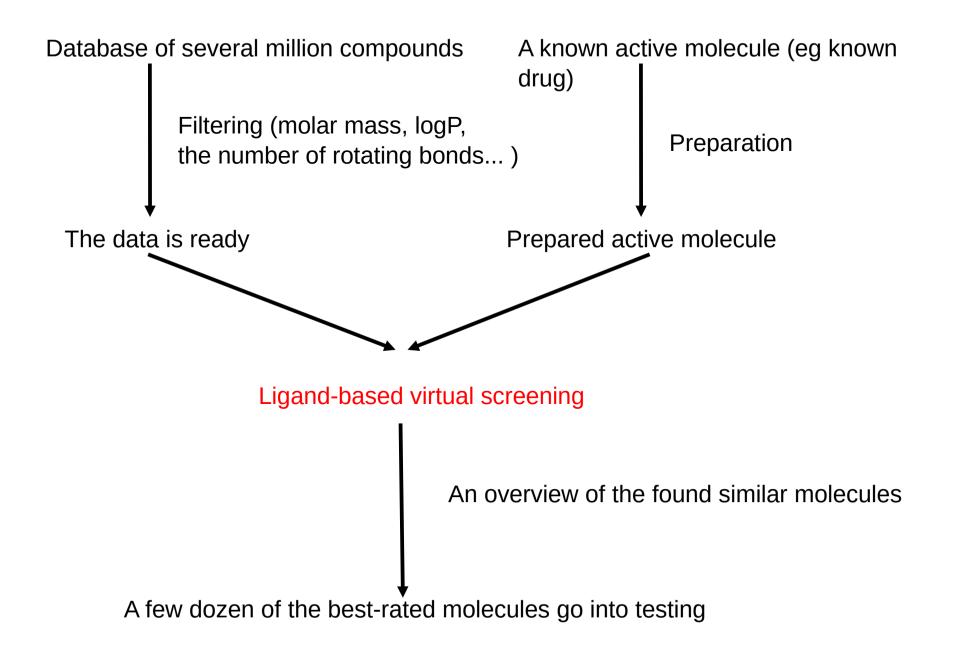
ProBiS for drug development

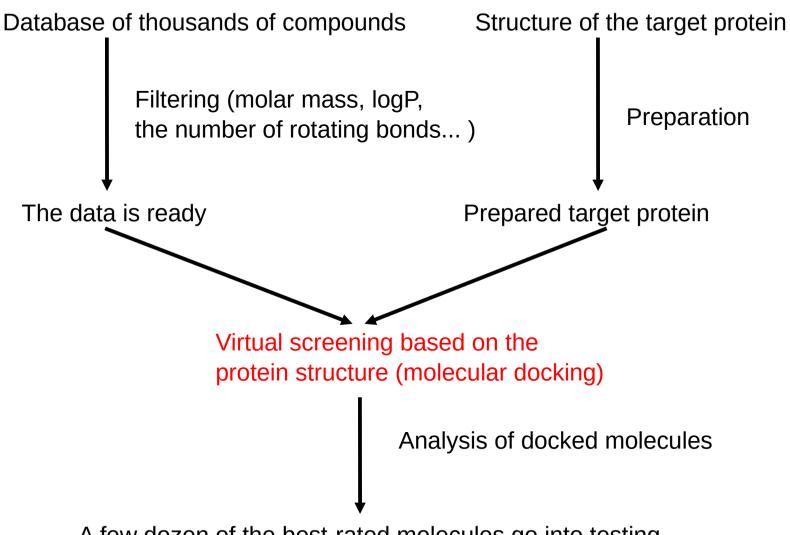

Janez Konc


National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana


Ljubljana, 27/02/2024

Why do we need a computer in drug development?


Let's speed up the discovery of new active compounds.

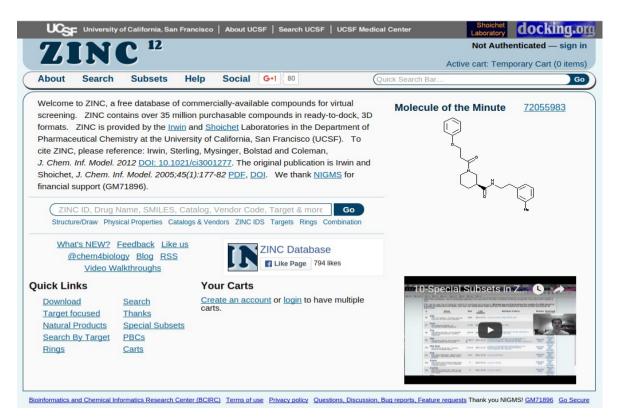


General scheme I

General scheme II

A few dozen of the best-rated molecules go into testing

I. Ligand-based virtual screening

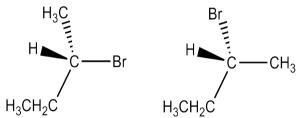

- Compound library
- Known active compound
- Solving algorithm (LiSiCA Ligand Similarity using Clique Algorithm, <u>http://insilab.org/lisica</u>)

	In silico Laboratory for Innovation in Drug Discovery
Insilab Sof	ftware - Projects Publications People Get Involved Statistics Help Forum
	ProBiS Plugin Maximum Clique Algorithm LiSiCA
LiSiCA Softwar	re view
About Download	Installation Usage Related Publications
	Reference compound Graph theory Anti-Alzheimer inhibitors

Compound libraries

...are commercial and non-commercial databases of 2D and 3D structures of small synthetic and natural molecules.

- PubChem (93M structures, https://pubchem.ncbi.nlm.nih.gov)
- ZINC (35M structures; several subsets of compounds, http://zinc.docking.org)
- Cambridge Structural Database (crystal structures of small molecules)
- NCI (140K structures; cancer research)



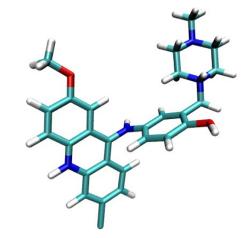
Preparation of small molecules

CI

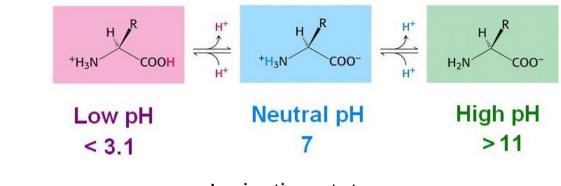
N

- Filter (MM, number of rotating bonds, functional groups toxicity)
- 2D or 3D virtual screening?
- In 3D conversion from 2D to 3D structures
- Conformations
- Stereoisomers
- Ionization states

Stereoisomers

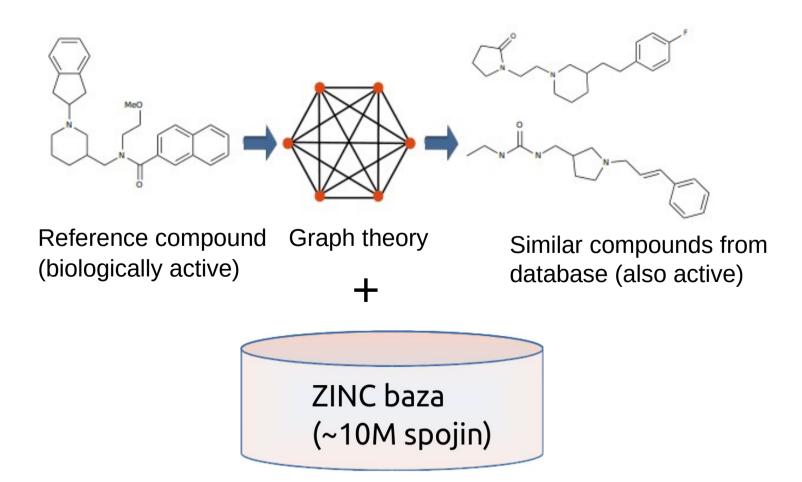

2D structure

Ô


N

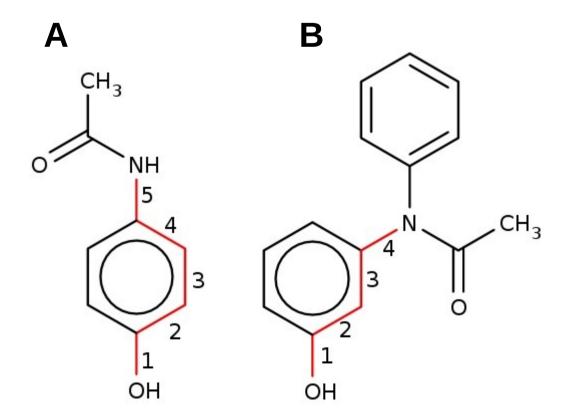
OH

Н



3D structure

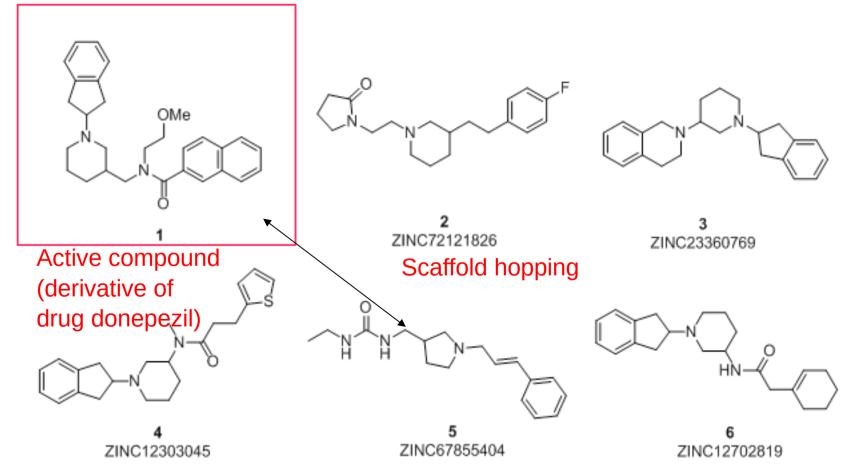
Ionization states


LiSiCA - program for ligand-based virtual screening

J. Chem. Inf. Model., 2015, 55, 1521-1528.

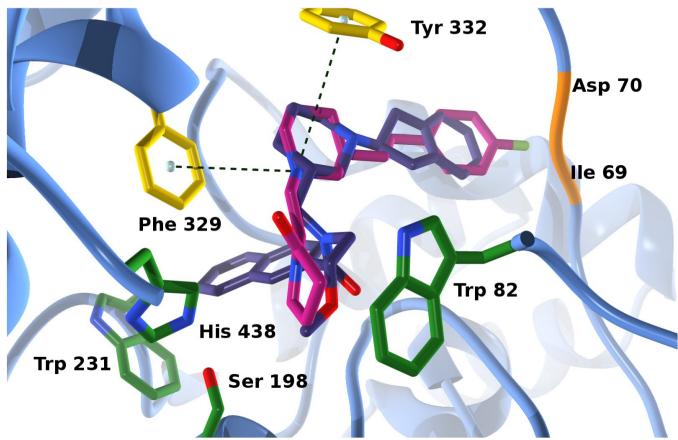
J. Cheminform., 2016, 8:46.

Tanimoto coefficient (T) - a measure of the similarity of molecules


T(AB) = c / (a + b - c) = 11 / 11 + 17 - 11) = 11 / 17 = 0.65

- c number of total atoms
- a, b number of atoms of molecule A and B

Alzheimer's - screening ~10M compounds


* Degeneration of neurons -> decrease in acetylcholine concentration

- * Increased expression of the butyrylcholinesterase enzyme in Alzheimer's disease
- * Based on known butyrylcholinesterase inhibitors, "make" new ones

Compound 1: known inhibitor of butyrylcholinesterase Compounds 2-6: active compounds found by LiSiCA (measured IC50 values of new inhibitors: 80 nM – 840 nM)

Comparison of known inhibitor: a new inhibitor

3D overlay:

- known inhibitor (dark purple)
- new inhibitor (IC50: 80 nM) (pink)

LiSiCA - user interface

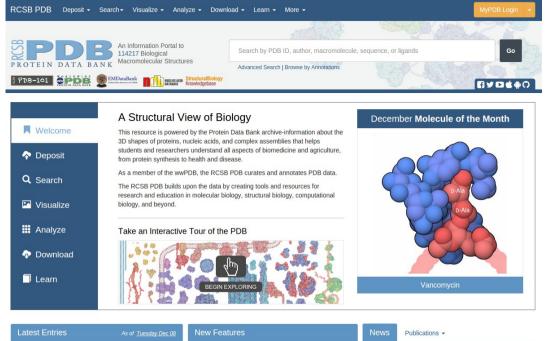
🔂 LISICA Plugin			— — X
		ouse <u>W</u> izard <u>P</u> lugin	Help
LiSiCA S	oftware	ersion 1.7.5.0.	A Reset Zoom Orient Draw Ray Unpick Deselect Rock Get View < < Stop Play > > MClear
		software. Although some versions in the public domain.	Command Builder Volume Rebuild Abort
Inputs Outputs		study than plassa valuntaan	<u> </u>
Reference Ligand:	D:/Projects/LiSiCA/Sample_MOL2/zinc_18274777.mol2 Browse		
Target Ligand(s):	D:/Projects/LiSiCA/smallDatabase.mol2 Browse		all ASHLC
Product Graph Dimension:	2 Dimensional Screening	A A TA	
	3 Dimensional Screening	en-Source	
Maximum allowed Shortest Path difference:	1	yMOL™	
No of highest ranked molecules to write to the output:	100	1.7.x	
Number of CPU cores to be used:	4	RAN	
Save results in:	D:\Projects\LiSiCA\LiSiCA_Executable Browse		
		- Copyright © 2009-2014 Schrödinger, LLC puilds with maintenance and support, ct home page at: http://pymol.org	Shft +Box -Box Clip MovS Ctrl +/- PkAt Pk1 MvSZ CtSh Sele Orig Clip MovZ SnglClk +/- Cent Menu DblClk Menu - PkAt
	Close	A AM	Selecting Residues State 1/ 1
🚱 📜 🀬 🥭 🔋 🗄	🗄 🚺 🗧 📄 🔳		EN 🔺 🌒 🔒 📮 1:38 PM 9/22/2015

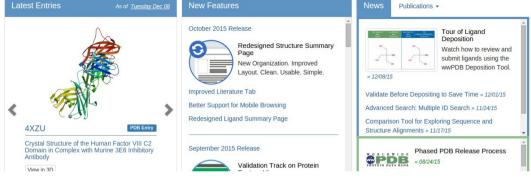
LiSiCA - user interface

LISICA	A Plugin		-				_ _ X	yMOL Molecular Graphics System
								t Build Movie Display Setting Scene Mouse Wizard Plugin
		LiSiCA So	oftwa	ire		-		ted OpenGL version 2.0 or greater. Shaders available. ted OpenGL version 4.20. graphics engine: NDOR: Intel (R) HD Graphics 4400 RSION: 4.2.0 - Build 10.18.10.3412 red 4.2 PU cores. Enabled multithreaded rendering. quad-buffer stereo 30 detected and enabled.
Inputs	Outputs							jects\LiSiCA\LiSiCA_Executable\LiSiCAx64_plugin.exe -R D:\Projects\L 💌
	ZINC ID	Tanimoto score	Ref.	Num Ref. Atom	Tar. Num	Tar. Atom	Atom Type 🔶	PyMOL Viewer
	ZINC36259732	0.826087	14	H3	3	H1	н	
	ZINC36259735	0.826087	12	H1	17	H4	н	
	ZINC36259749	0.826087	≡ 13	H2	16	H3	н	
	ZINC36259752	0.826087	1	C1	2	C2	C.3	
	ZINC13514742 ZINC34181597	0.826087 0.818182	11	02	14	03	0.3	
	ZINC34181397 ZINC00084006	0.818182	20	H9	22	H9	н	
	ZINC39367469	0.791667	9	C7	10	C7	C.ar	
	ZINC39367471	0.791667	8	C6	9	C6	C.ar	
	ZINC39367473	0.791667	18	H7	20	H7	Н	
	ZINC39367474	0.791667	17	C5 H6	8 19	C5 H6	C.ar H	
	ZINC01750540	0.791667	3	01	5	01	0.2	
	ZINC00335291	0.782609	2	C2	4	C3	C.2	
	ZINC00335289	0.782609	6	C4	7	C4	C.ar	
	ZINC39192900	0.782609	10	C8	11	C8	C.ar	
	ZINC03223820	0.772727	19	H8	21	H8	Н	
	ZINC00394183	0.772727	4	N1	6	N1	N.am	
	ZINC05863462	0.772727	15	H4	18	H5	н	
	ZINC82388897	0.769231	5	C3	12	C9	C.ar	
	ZINC82309221	0.75						
	ZINC11956864	0.75						
	ZINC11956859	0.75						
	ZINC05868571 ZINC00152393	0.75 0.75	-					
View	in PyMOL Show	w Correspondence					~	
			Close					PyMOL>_
				S			C-1	

II. Virtual screening based on the protein structure (molecular docking)

- Structure of the target protein
- Compound library
- Binding sites with the ProBiS (Protein Binding Sites) approach
- Virtual screning with the GenProBiS and ProBiS-Fold web server
- Determination of ligand interactions with sequence variants (sequence variants) in the binding site


		Se	earch by PDB ID As of Nov 29, 2013 your protein is compared	with 37643 structures	Search	
				mar or or a succures		_
Minimization 2-chioro-4-[[(4,6-tii	3ks3.A A S H L C M	3KS3 , Chain 🖾 : 207 s				01
Inte. Energy=-59.2 kcalimol	2-chloro-4-([(4,6-di A S H L C M	Small Molecules Proteins	Nucleic Acids Ions			
Download CHARMM seripts Close	Mini2/2-chloro-4-{[A S H L C M	Binding Site 1 Binding Site 1 Binding Site 18	2 Binding Site 3 Binding Site 4 Binding Site	5 Binding Site 6	Binding Site 7	Binding Site
		Structure	Name 😄	Source : Confide	nca Binder	Ligand 👙
	Set Minimization Parameters	××	2-chloro-4-{[(4,6-dimethylpyrimidin-2-yl) sulfany	4knm 4.23	Specific	Remove
	Gradient Tolerance: 0.1 6 Steepest Descent Steps: 100 0 ADNR Steps: 100 0	, Ĉ	2-chloro-4-[(pyrimidin-2-yisulfanyl) acety]benze	4knn 4.23	Specific	View 3D
	Implicit Solvent Start Minimization Cancel	.ettok	N-(4-chlorobenzyl)-n-methylbenzene-1,4-disulfo	3da2 4.23	Specific	View 3D
		int ^{ok}	N-(4-chlorobenzyl)-n-methylbenzene-1,4-disulfo	3da2 4.23	s Specific	View 3D
	12-32	Yetze	2,3,5,6-tetrafluoro-4-[(2-hydroxyethyl) sulfonyl]b	4hu1 4.23	s Specific	View 3D
		n,c ₀→o	Acetate ion	3d0n 4.23	Non-specific	c View SD
		à	2-chloro-4-[(pyrimidin-2-ylsulfanyl) acetyl]benze	4knn 4.23	Specific	View 3D
redicted 3D conformation o	f the ligand	Yopy.	2,3,5,6-tetrafluoro-4-[(2-hydroxyethyl) sulfony[]b	4hu1 4.23	Specific	View 3D
17	i the ligand	\$ ¢	2-chloro-4-{[(4,6-dimethylpyrimidin-2-yl) sulfanyl	4knm 4.23	Specific	View 3D
h the target protein	Ĩ	rot	5-acetamido-1,3,4-thiadiazole-2-sulfonamide	3czv 4.23	Specific	View 3D
	JSmol	ret	5-acetamido-1,3,4-thiadiazole-2-sulfonamide	3mlb 3.9	Specific	View 3D
Not Conserved Asymmetric Unit Asymmetric Unit Download PDB Download PNG Black Background Spin	Conserved n	-00-I-	6-ethoxy-1,3-benzothiazole-2-sulfonamide	3mdz 3.9	Specific	View 3D


J. Chem. Inf. Model., **2015** , 55 , 2308-2314. Bioinformatics, **2010** , *26* , 1160–1168.

http://probis.cmm.ki.si_and https://probis.nih.gov

Preparation of target protein I

- The Protein Data Bank (PDB) is a Database of Protein Structures (http://www.rcsb.org)
- Determined by X-ray, electronically microscopy or nuclear magnetic resonance
- The protein is uniquely identified by four letters PDB code and single letter chain code e.g. PDB ID: <u>4BQP</u>
 Chain ID: <u>A</u>

Preparation of target protein II

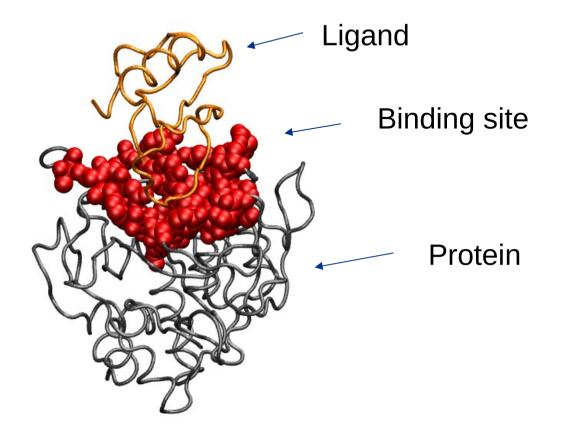
AlphaFold database of protein structures

(https://alphafold.ebi.ac.uk/)

predicted protein structures using machine learning approach

48 organisms, more than 200 million structures

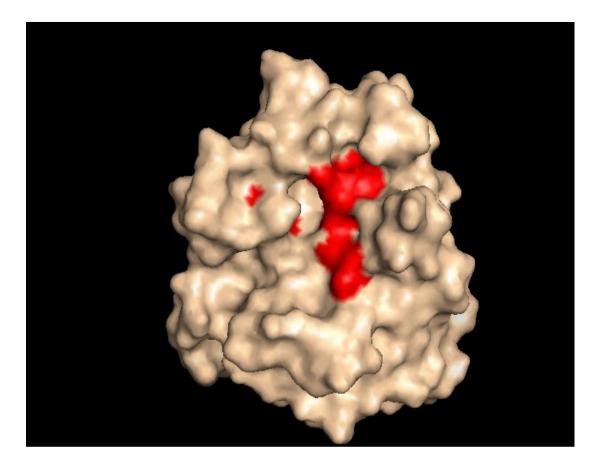
	🕂 EMBL-EBI home	A Services	怒 Research	👌 Trair	ning i	About us
AlphaFold Protein Structure Database			Home	About	FAQs	Downl
Alp	ohaFo	ld				
Protein Stru	ucture	e Da	tab	as	9	
Developed by	/ DeepMind and	EMBL-EB	I			
Search for protein, gene, UniProt accession	or organism or sequ	ence search	BETA	Se	arch	
Examples: MENFQKVEKIGEGTYGV Free fatty acid	receptor 2 At1g586		E. coli ee search helj			
			ee search neu			
AlphaFold DB provides ope structure predictions to					-	tein


Background

Protein molecular dynamics

Proteins are dynamic: which conformation to use?

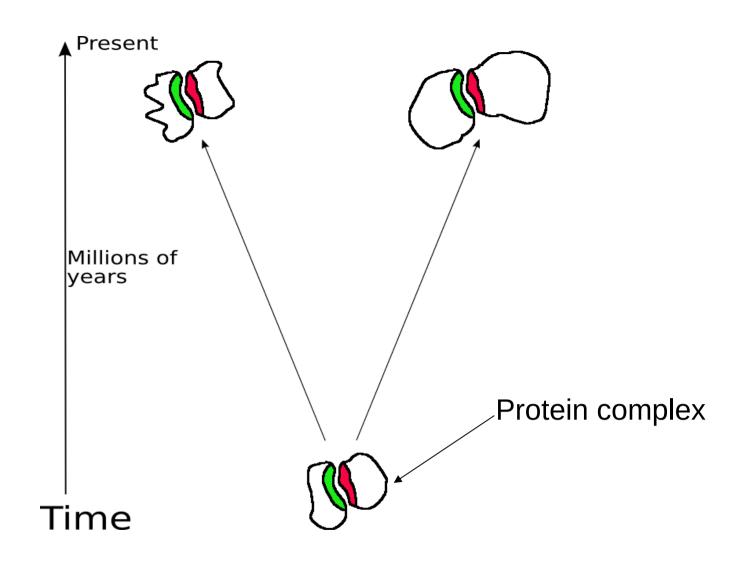
Determination of the binding site

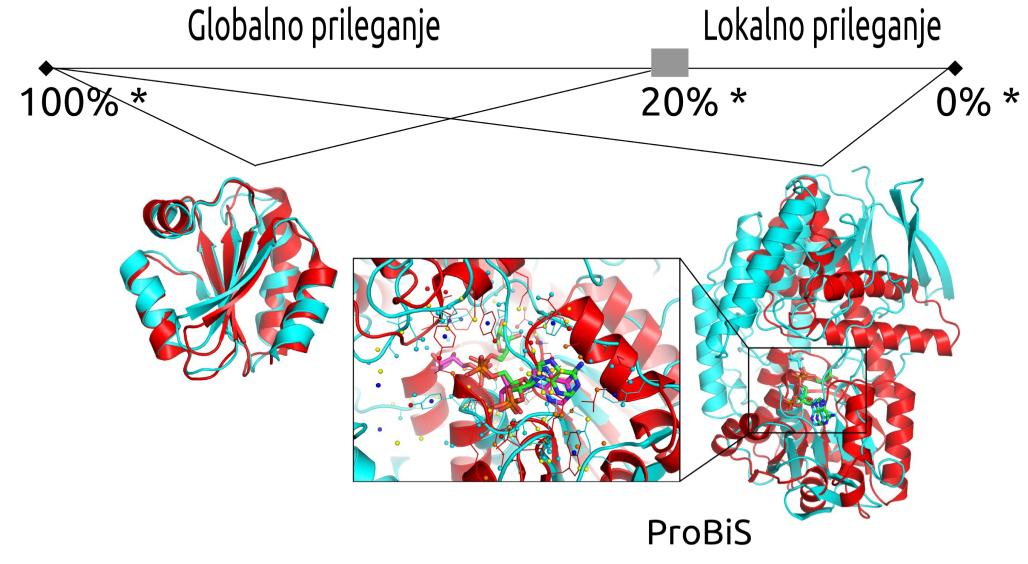


Ligands:

- proteins
- nucleic acids
- synthetic and natural compounds
- Ions
- waters

Binding site

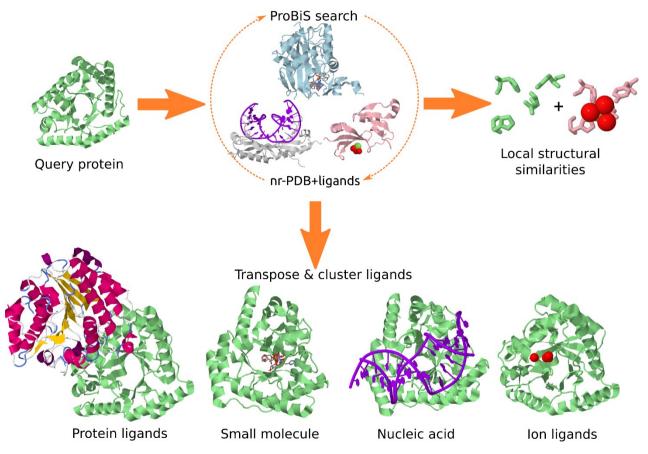

The number of potential target proteins is estimated to be ~6000, but pharma uses only ~200 for development of new drugs.


The binding sites for the active substances are in cavities in the surface of the protein.

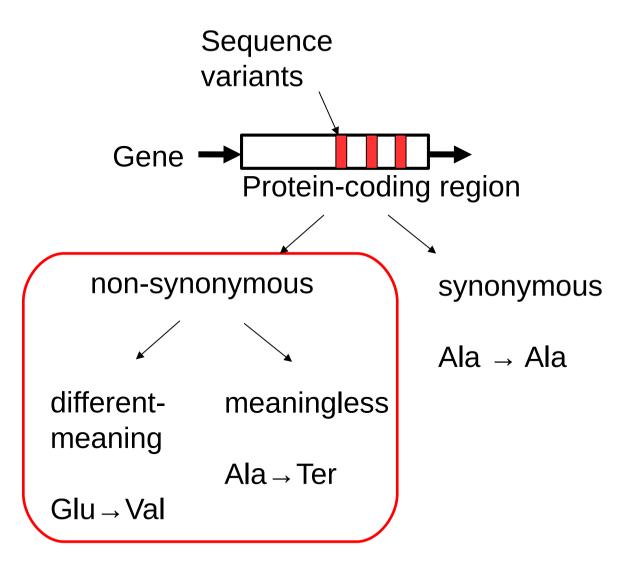
Evolution of binding sites

Binding sites change more slowly than the rest of the protein through evolution.

ProBiS algorithm for structural protein fitting

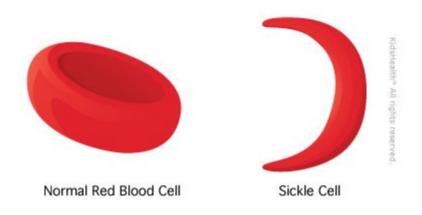

* sequence identity

Bioinformatics, 2010 , 26 , 1160–1168.

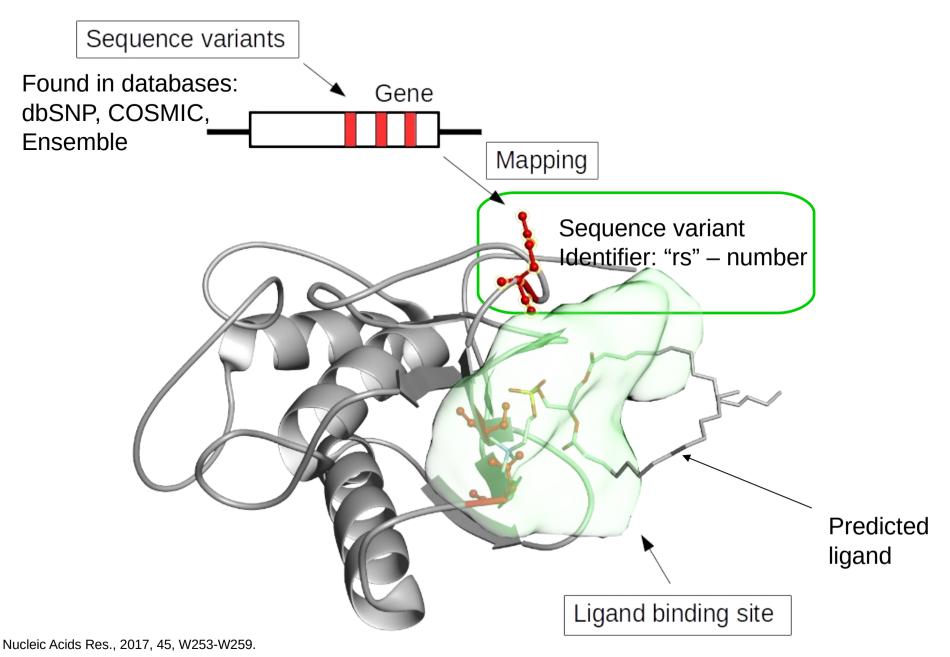

Virtual screening with the ProBiS approach

- If the two binding sites are similar, similar ligands bind to them

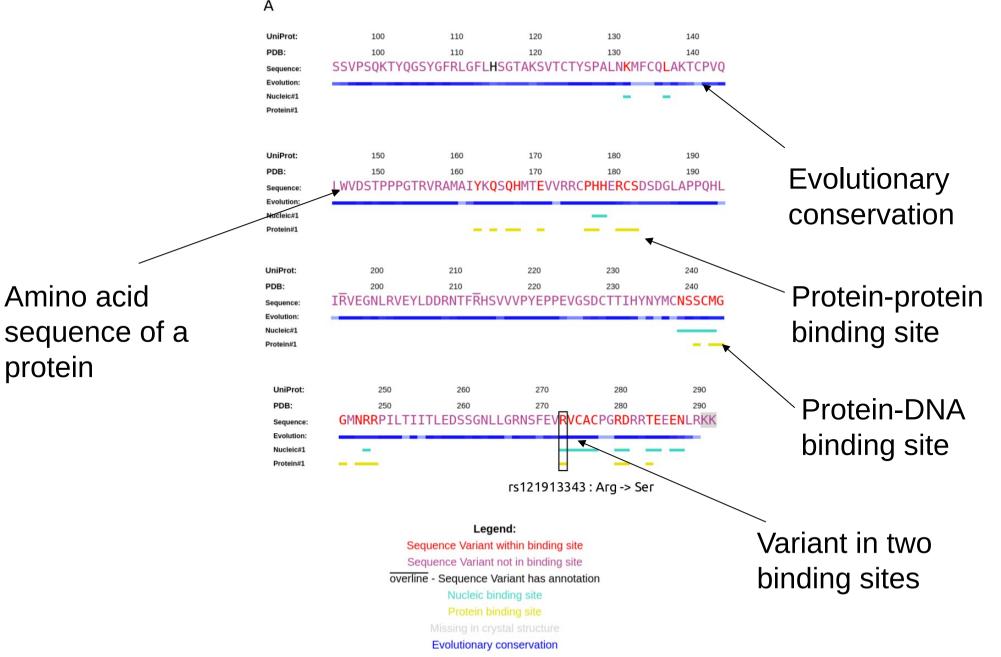
 Ligands from the first binding site can be "moved" to the second, binding site provided that the two binding sites are similar



Sequence variants

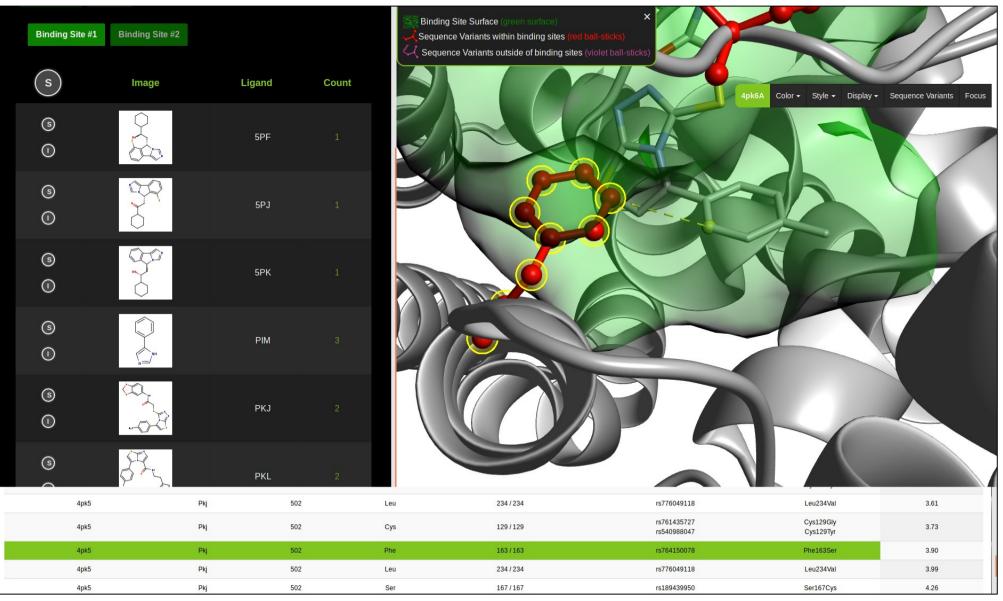

Sequence variants

- Responsible for the emergence of various diseases
- Responsible for different response to drugs
- Involved in the formation of cancer



Sickle cell anemia is caused by a hemoglobin variant that has the amino acid valine instead of glutamic acid at position 6 in the sequence.

GenProBiS: mapping sequence variants to binding sites

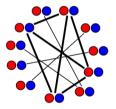


Variants and binding sites in the protein sequence

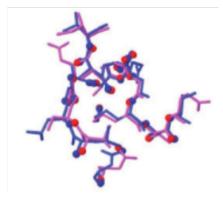
0123456789

GenProBiS web server

Nucleic Acids Res., 2017, 45, W253-W259.

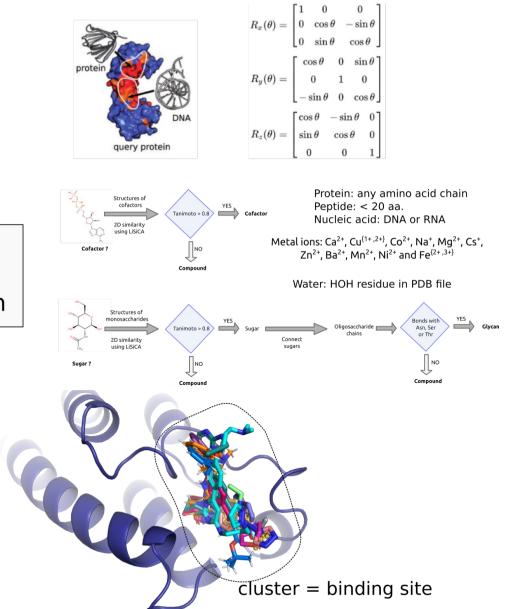

Prediction of binding sites for AlphaFold structures

Input: AlphaFold protein structure model (human)


Experimental result
 Computational prediction

Compare against PDB (with ProBiS algorithm)

Gather pairwise local similarities between AlphaFold structure and PDB structures



Prediction of binding sites for AlphaFold structures

Transpose the ligands from PDB to AlphaFold structure

Determine ligand types: protein, peptide, nucleic acid, small molecule (cofactors and compounds), metal ion, water, glycan

Cluster ligands of same type by their proximity

Prediction of binding sites for AlphaFold structures

Refine small molecule binding site types (with docking applications in mind) Substrate-competitive: small molecule drugs, agonists, substrates, substrate-competitive inhibitors but not cofactors

Cofactor-competitive: Cofactors and ligands that overlap with cofactors, e.g., cofactor-competitive inhibitors

Water & ion conservation score:

 $\mathbf{O}_{\mathbf{bsite}} = n_{\text{ligand}}/n_{\text{super}}$ (occupancy)

 n_{ligand} = number of liganded superimposed sites n_{super} = total number of superimposed sites

Hard-coded limits: $O_{water} > 0.6$, $n_{water} > 10$

Druggability score:

 $\mathbf{S}_{\mathbf{bsite}} = \max_{1 \le i \le n \text{ ligands}}(S_{\text{cplx},i} + w \times O_{\text{bsite}})$

 $S_{cplx} = (n_{rings} + 1) \times n_{elements}$ (complex score)

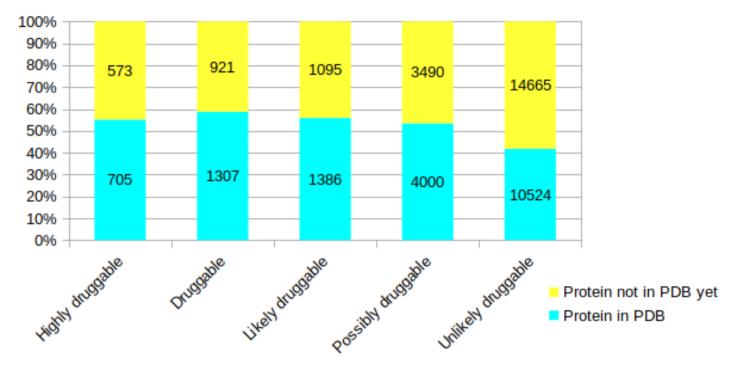
 n_{rings} = number of ring systems $n_{elements}$ = number of chemical elements

w = w = 0 if $S_{cplx,i} < 12$, otherwise w = 100

Confidence score

 $C_{bsite} = min_{1 \le i \le n_{bsite_{residues}}} (AF model confidence_{residue_{i}})$

Result: predicted binding sites and predicted ligands for each binding site in human proteome

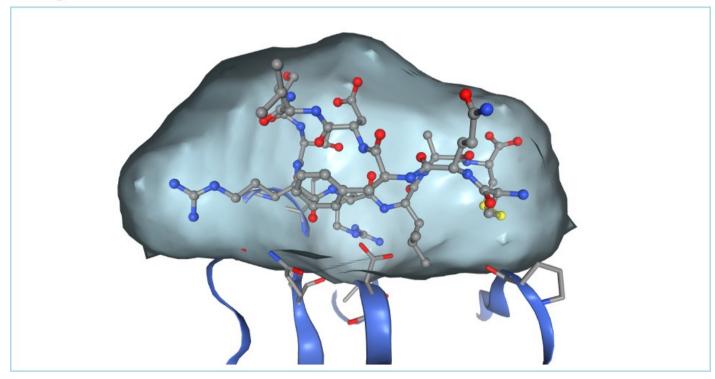

Calculate scores: druggability score for substrate-

and cofactor-competitive binding sites, conservation

score for water and metal ion binding sites

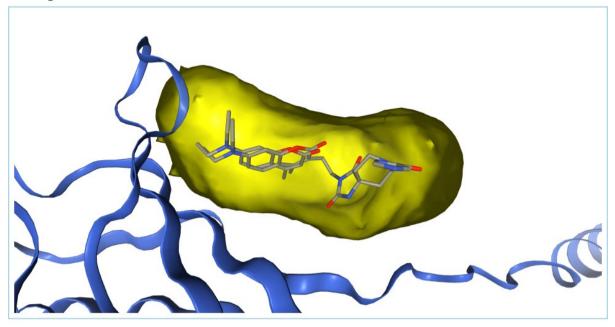
New binding sites useful for drug development

Druggability of small molecule binding sites



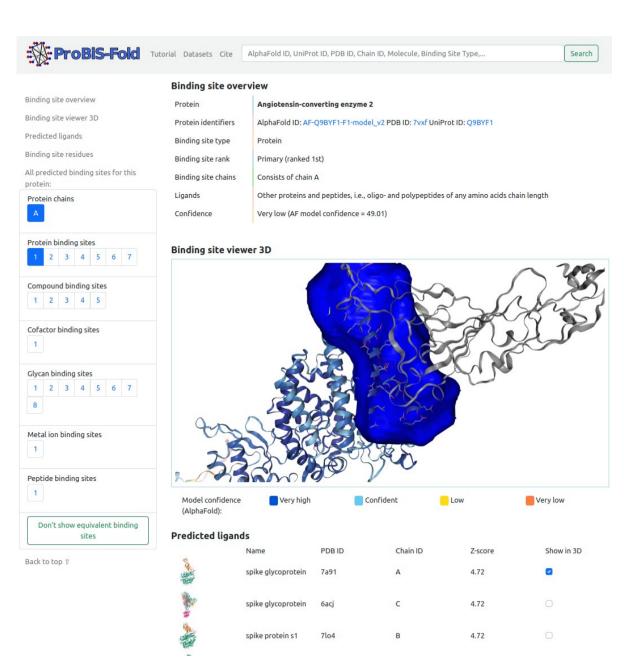
Peptide binding sites

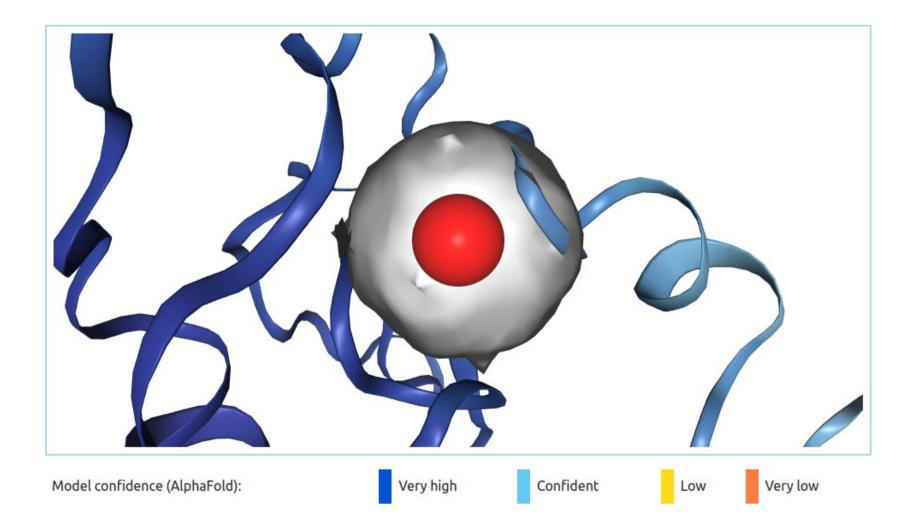
Binding site overview


Protein	Probable non-functional immunoglobulin lambda variable
Protein identifiers	AlphaFold ID: AF-A0A075B6I3-F1-model_v2 PDB ID: None UniProt ID: A0A075B6I3
Binding site type	Protein
Binding site rank	Secondary (ranked 2nd)
Binding site chains	Consists of chain A
Ligands	Peptides, i.e., peptide chains with less than 20 amino acids in length

Binding site viewer 3D

Small molecule binding sites


Binding site viewer 3D


Predicted ligands

	Chem ID	Name	PDB ID	Z-score	Show in 3D
ord	9ZW	4-methyl- 3-(morpholi	7lmq	2.9	
Lago.	6ZW	7-(diethylamino)- 4-m	6mg5	2.9	•
200 X	9ZX	4-methyl- 3-(morpholi	7lmr	2.9	
Roterton	NY6	3-[2-[7- (diethylamin	7lmp	2.9	

Protein binding sites

Binding sites for water and ions

ProBiS-Fold web server

ProBiS-Fold annotates AlphaFold human protein database with

- Binding sites for: compounds (small molecules), cofactors, proteins, peptides, nucleic acids, metal ion and conserved water
- Post-translational modification sites (glycosylation sites)
- Predicted ligands and glycosides for each binding site (3D structures as bound to protein)

Binding sites and post-translational sites types

- Compound (substrate/agonist-competitive ligands), cofactor (cofactor and cofactor-competitive ligands) (based on list of known cofactors), protein (both <20 aa. and >=20 aa.), peptide (<20 aa.), nucleic acid (DNA or RNA molecules), metal ion (structurally conserved) and water (structurally conserved)
- Glycoslyation sites (O- and N- glycosylation)

Binding site type and binding site rank
See tutorial for more guery options

Input

Protein name

 Ranked according to the estimated druggability score (applies to compound and cofactor sites)

Protein function, such as, protein kinases or cancer-related proteins

ProBiS-Fold aims to

- Provide interactive, downloadable binding sites for human proteome for functional and drug discovery studies
- Enable human proteome-wide structure-based virtual screening and selectivity prediction

Output

- Centroids (x,y,z,radius) that accurately describe the often convoluted binding site shapes
- Binding site protein residues that interact with ligands
- Predicted ligands obtained using structure-based comparative ProBiS approach from similar binding sites in the PDB
- Binding site bounding box (in AutoDock Vina format) ready for docking
- Receptor, an AlphaFold2 predicted protein single chain structure

Download binding sites as

- AlphaFold ID, UniProt ID, PDB ID and Chain ID (where available)
 Individual or multiple selected
- Individual or multiple selected binding sites based on user query (see tutorial for how to efficiently use the search bar on top of the page)
 - Prepared binding site datasets

Developed by Insilab in 2022.

ProBiS-Fold database

Download binding sites datasets

inding site type	Ligands	Dataset
rotein	Other proteins and peptides, i.e., oligo- and polypeptides of any amino acids chain length	
ucleic	Nucleic acids (DNA or RNA)	
eptide	Peptides, i.e., oligopeptides with less than 20 amino acids in length	
ompound	Small molecule drugs, agonists, substrates, substrate-competitive inhibitors but not cofactors	
ofactor	Cofactors and ligands that overlap with cofactors, e.g., cofactor-competitive inhibitors	Ownload
lycan	Covalently attached O- and N-glycans	Download
onserved water	Conserved water molecules, i.e., those found in more than 10 PDB structures (num_occ > 10) at the same location and having high conservation score (cons > 0.6)	Download
letal ion	Biologically relevant metal ions, i.e., those found in more than 10 PDB structures at the same location	
letal io	n	n Biologically relevant metal ions, i.e., those found in more than 10 PDB structures at the same location Developed by Insilab in 2022.

Exercise

– Exercise 1: LiSiCA – virtual screening based on a known active compound – medicine

– Exercise 2: GenProBiS – screening based on the protein structure

Exercise 1: LiSiCA - virtual screening based on the ligand

- Objective: To predict drug candidates based on known ligands (drugs)

- At <u>http://insilab.org/lisica</u>, under the "Download" tab, choose one of the drugs **acyclovir, aspirin**, **dopamine**, **paxlovid, remdesivir**

– Download the structure in MOL2 format

- Run the PyMOL program (already installed), then select "LiSiCA" in the "Plugin" menu

Comparison of the molecule with the "database.mol2" database (approx. 14,000 molecules), you can find it at http://insilab.org/lisica_under-the "Download" tab

– 2D and 3D virtual solving with LiSiCA

– Which compound among the first 100 has a different scaffold than the reference (scaffold hop) ?

Exercise 2: GenProBiS - virtual screening based on the structure of the protein

Objective: To predict drug candidates based on the structure of the target protein

in GenProBiS (http://genprobis.insilab.org)

1) What are the types of binding sites on ACE2? ("Table of Ligands" tab)

2) Find one known drug among the predicted "Compound" ligands, which binds to ACE2! What medicine is this?

3) What disease is it used to treat?

4) Find the binding site (or sites) for the SARS-CoV "spike protein"! Which ones amino acids make it up (list at least 3)?

5) Which sequence variants on ACE2 can affect SARS-CoV binding "protein spike"? (clicking on "I" in the ligand table opens sequence variants interacting with the ligand)

More at: <u>http://insilab.org</u>